
03_Functions

January 19, 2018

1 Functions

A fucntion is a named sequence of statements that performs a computation. A function could be
either already defined (built-in) in a programming language (e.g. print()), or you can define your
own function and

1.0.1 Examples of Built-in Functions

In [1]: min(30, 5, 7)

Out[1]: 5

In [2]: max("This is a Python workshop")

Out[2]: 'y'

In [3]: len("Python")

Out[3]: 6

1.0.2 Random Numbers

In [4]: import random # import the library random to generate random numbers

x = random.random() # returns a random float between 0 and 1
print(x)

0.9420782336639401

In [5]: # Another way of defining libraries

import random as rdm # giving the library an alias

x = rdm.random()
print(x)

0.7608862622892321

1

In [6]: # randint() takes two parameters "low" and "high" and returns an integer
between "low" and "high"

rdm.randint(3, 12)
or
random.randint(3,12)

Out[6]: 8

In [7]: # we can choose an element from a given sequence at random

define the sequence
t = [1,5, 8, 10, 20]
rdm.choice(t)

Out[7]: 8

1.0.3 Creating New Functions

In [8]: # A function definition specifies the name of the function followed by a sequence of
statements that execute when the function is called.

def print_me():
print("My name is Adele")

In [9]: # call the function print_me()

print_me()

My name is Adele

In [10]: # Update the print_me() function to print a string given as an argument

def print_me(toprint): #toprint is an argument
print(toprint)

In [11]: print_me("My name is Beyonce")

My name is Beyonce

1.0.4 Creating Functions that returns a value

The previous function print_me() is called a "void" function because it is not return a value. It is
simply performing an action (printing), but not returning a value.

Suppose that we want to create a new function that takes two arguments "a", and "b", and
returns the double of their sum i.e. 2*(a+b). Let’s call this function "bing()".

2

In [12]: def bing(a, b):
result = 2*(a+b)
return result

if we don't have the return statemnet, the value of the result
will not be returned after the function is done computations

In [13]: bing(2, 3)

Out[13]: 10

In [14]: # Now we can save the returned value in a variable

x = bing(4,5)
print(x)

18

1.0.5 Exercises

Rewrite your pay computation with time-and-a-half for overtime and create a function called
"computepay" which takes two parameters (hours and rate).

In [15]: import sys

try:
hours = float(input("Enter Hours: "))
rate = float(input("Enter Rate: "))

except:
print("Please enter valid input...")
sys.exit(1)

def computepay(hours, rate):
if hours > 40:

overtime_hours = hours - 40 # hours over 40
hours -= overtime_hours # regular rate hours
overtime_pay = overtime_hours * rate * 1.5
return (hours * rate) + overtime_pay

else:
return (hours * rate)

pay = computepay(hours, rate)

print("Pay: %.2f" % pay)

OR
print("Pay: " + str(pay))

3

OR
print("Pay: {}".format(pay))

Enter Hours: 3
Enter Rate: 15
Pay: 45.00
Pay: 45.0
Pay: 45.0

4

	Functions
	Examples of Built-in Functions
	Random Numbers
	Creating New Functions
	Creating Functions that returns a value
	Exercises

