LINEAR MODEL SELECTION
AND REGULARIZATION
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Improving on the Least Squares

Regression Estimates?

- We want to improve the Linear Regression model, by
replacing the least square fitting with some alternative
fitting procedure, i.e., the values that minimize the mean
square error (MSE)

- There are 2 reasons we might not prefer to just use the
ordinary least squares (OLS) estimates

1. Prediction Accuracy
2. Model Interpretability



1. Prediction Accuracy

The least squares estimates have relatively low bias and
low variability especially when the relationship between Y
and X is linear and the number of observations n is way
bigger than the number of predictors p (n>> p)

But, when n = p, then the least squares fit can have high
variance and may result in over fitting and poor estimates
on unseen observations,

And, when n<p, then the variability of the least squares
fit increases dramatically, and the variance of these
estimates in infinite



2. Model Interpretability

- When we have a large number of variables X in the model
there will generally be many that have little or no effect on
Y

- Leaving these variables in the model makes it harder to
see the “big picture’, i.e., the effect of the “important
variables”

- The model would be easier to interpret by removing (i.e.
setting the coefficients to zero) the unimportant variables



Solution

Subset Selection

|dentifying a subset of all p predictors X that we believe to be related to
the response Y, and then fitting the model using this subset

E.g. best subset selection and stepwise selection
Shrinkage

Involves shrinking the estimates coefficients towards zero

This shrinkage reduces the variance

Some of the coefficients may shrink to exactly zero, and hence
shrinkage methods can also perform variable selection

E.g. Ridge regression and the Lasso
Dimension Reduction

Involves projecting all p predictors into an M-dimensional space where
M < p, and then fitting linear regression model

E.g. Principle Components Regression



6.1 SUBSET SELECTION




6.6.1 Best Subset Selection

- In this approach, we run a linear regression for each
possible combination of the X predictors

- How do we judge which subset is the “best”?

- One simple approach is to take the subset with the
smallest RSS or the largest R?

- Unfortunately, one can show that the model that includes
all the variables will always have the largest R? (and
smallest RSS)



Credit Data: R? vs. Subset Size

- The RSS/R? will always decline/increase as the number of
variables increase so they are not very useful

- The red line tracks the best model for a given number of
predictors, according to RSS and R?
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Other Measures of Comparison

- To compare different models, we can use other
approaches:
- Adjusted R?
- AIC (Akaike information criterion)
- BIC (Bayesian information criterion)
- C, (equivalent to AIC for linear regression)

- These methods add penalty to RSS for the number of
variables (i.e. complexity) in the model

- None are perfect
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Credit Data: C,, BIC, and Adjusted R?

- A small value of Cp and BIC indicates a low error, and
thus a better model

- A large value for the Adjusted R? indicates a better model
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6.1.2 Stepwise Selection

Best Subset Selection is computationally intensive
especially when we have a large number of predictors

(large p)
More attractive methods:

Forward Stepwise Selection: Begins with the model containing no
predictor, and then adds one predictor at a time that improves the
model the most until no further improvement is possible

Backward Stepwise Selection: Begins with the model containing all
predictors, and then deleting one predictor at a time that improves
the model the most until no further improvement is possible




6.2 SHRINKAGE METHODS
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6.2.1 Ridge Regression

- Ordinary Least Squares (OLS) estimates f's by
minimizing

2
n p
RSS = Z (yz — Bo — Zﬁjxij> :
i=1 j=1

- Ridge Regression uses a slightly different equation

n p ’ p
> (yi — Bo — Zﬁjxij) +A) _B7 =RSS +
i=1 j=1 j=1

14
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Ridge Regression Adds a Penalty on g's!

- The effect of this equation is to add a penalty of the form

D
A B3
j=1

Where the tuning parameter )\ is a positive value.

- This has the effect of “shrinking” large values of /3'S
towards zero.

- It turns out that such a constraint should improve the fit,
because shrinking the coefficients can significantly reduce
their variance

- Notice that when A = 0, we get the OLS!



Credit Data: Ridge Regression
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- As )\ increases, the standardized coefficients shrinks

towards zero.
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Why can shrinking towards zero be a
good thing to do?

- It turns out that the OLS estimates generally have low
bias but can be highly variable. In particular when n and p
are of similar size or when n < p, then the OLS estimates
will be extremely variable

- The penalty term makes the ridge regression estimates
biased but can also substantially reduce variance

- Thus, there is a bias/ variance trade-off
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Ridge Regression Bias/ Variance

- Black: Bias

- Green: Variance

- Purple: MSE

- Increase A increases bias but decreases variance
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Bias/ Variance Trade-off

- In general, the ridge
regression estimates
will be more biased
than the OLS ones but

have lower variance

- Ridge regression will
work best in situations
where the OLS
estimates have high
variance

Prediction Error
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Computational Advantages of Ridge

Regression

- If p is large, then using the best subset selection approach
requires searching through enormous numbers of

possible models

- With Ridge Regression, for any given A, we only need to
fit one model and the computations turn out to be very
simple

- Ridge Regression can even be used when p > n, a
situation where OLS fails completely!
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6.2.2. The LASSO

- Ridge Regression isn't perfect

- One significant problem is that the penalty term will never
force any of the coefficients to be exactly zero. Thus, the
final model will include all variables, which makes it harder
to interpret

- A more modern alternative is the LASSO

- The LASSO works in a similar way to Ridge Regression,
except it uses a different penalty term
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LASSO’s Penalty Term

- Ridge Regression minimizes

n D 2 p
Z (?Jz — Bo — 53'%;3') + )\ZBJZ = RSS
i—1 =1 i=1

- The LASSO estimates the p's by minimizing the

2
Z(yi—50—25jxij) +>\Z|5g‘| RSS
i=1 J=1 J=1

<
I
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What's the Big Deal?

- This seems like a very similar idea but there is a big
difference

- Using this penalty, it could be proven mathematically that
some coefficients end up being set to exactly zero

- With LASSO, we can produce a model that has high
predictive power and it is simple to interpret
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Credit Data: LASSO
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6.2.3 Selecting the Tuning Parameter A
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- We need to decide on a value for A
- Select a grid of potential values, use cross validation to

estimate the error rate on test data (for each value of \)

and select the value that gives the least error rate
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