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Improving on the Least Squares 
Regression Estimates?  
• We want to improve the Linear Regression model, by 

replacing the least square fitting with some alternative 
fitting procedure, i.e., the values that minimize the mean 
square error (MSE) 

•  There are 2 reasons we might not prefer to just use the 
ordinary least squares (OLS) estimates 
1.  Prediction Accuracy 
2.  Model Interpretability 
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1. Prediction Accuracy 
•  The least squares estimates have relatively low bias and 

low variability especially when the relationship between Y 
and X is linear and the number of observations n is way 
bigger than the number of predictors p  

• But, when         , then the least squares fit can have high 
variance and may result in over fitting and poor estimates 
on unseen observations,  

• And, when          , then the variability of the least squares 
fit increases dramatically, and the variance of these 
estimates in infinite 
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n ≈ p

n < p

(n >> p)



2. Model Interpretability 
• When we have a large number of variables X in the model 

there will generally be many that have little or no effect on 
Y 

•  Leaving these variables in the model makes it harder to 
see the “big picture”, i.e., the effect of the “important 
variables” 

•  The model would be easier to interpret by removing (i.e. 
setting the coefficients to zero) the unimportant variables 
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Solution 
•  Subset Selection 

•  Identifying a subset of all p predictors X that we believe to be related to 
the response Y, and then fitting the model using this subset 

•  E.g. best subset selection and stepwise selection 
•  Shrinkage 

•  Involves shrinking the estimates coefficients towards zero 
•  This shrinkage reduces the variance 
•  Some of the coefficients may shrink to exactly zero, and hence 

shrinkage methods can also perform variable selection 
•  E.g. Ridge regression and the Lasso 

•  Dimension Reduction 
•  Involves projecting all p predictors into an M-dimensional space where 

M < p, and then fitting linear regression model 
•  E.g. Principle Components Regression   
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6.1 SUBSET SELECTION 
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6.6.1 Best Subset Selection 
•  In this approach, we run a linear regression for each 

possible combination of the X predictors  

• How do we judge which subset is the “best”? 

• One simple approach is to take the subset with the 
smallest RSS or the largest R2 

• Unfortunately, one can show that the model that includes 
all the variables will always have the largest R2 (and 
smallest RSS) 
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Credit Data: R2 vs. Subset Size 
•  The RSS/R2 will always decline/increase as the number of 

variables increase so they are not very useful  
•  The red line tracks the best model for a given number of 

predictors, according to RSS and R2 
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Other Measures of Comparison 
•  To compare different models, we can use other 

approaches: 
•  Adjusted R2 
•  AIC (Akaike information criterion) 
•  BIC (Bayesian information criterion) 
•  Cp (equivalent to AIC for linear regression) 

•  These methods add penalty to RSS for the number of 
variables (i.e. complexity) in the model 

• None are perfect 
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Credit Data: Cp, BIC, and Adjusted R2 
• A small value of Cp and BIC indicates a low error, and 

thus a better model 
• A large value for the Adjusted R2 indicates a better model 
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6.1.2 Stepwise Selection 
• Best Subset Selection is computationally intensive 

especially when we have a large number of predictors 
(large p) 

• More attractive methods: 
•  Forward Stepwise Selection: Begins with the model containing no 

predictor, and then adds one predictor at a time that improves the 
model the most until no further improvement is possible 

•  Backward Stepwise Selection: Begins with the model containing all 
predictors, and then deleting one predictor at a time that improves 
the model the most until no further improvement is possible 
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6.2 SHRINKAGE METHODS 
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6.2.1 Ridge Regression 
• Ordinary Least Squares (OLS) estimates       by 

minimizing 

• Ridge Regression uses a slightly different equation  
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shrinking the coefficient estimates can significantly reduce their variance.
The two best-known techniques for shrinking the regression coefficients
towards zero are ridge regression and the lasso.

6.2.1 Ridge Regression

Recall from Chapter 3 that the least squares fitting procedure estimates
β0,β1, . . . ,βp using the values that minimize

RSS =
n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2

.

Ridge regression is very similar to least squares, except that the coefficients
ridge regression

are estimated by minimizing a slightly different quantity. In particular, the
ridge regression coefficient estimates β̂R are the values that minimize

n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2

+ λ
p∑

j=1

β2
j = RSS + λ

p∑

j=1

β2
j , (6.5)

where λ ≥ 0 is a tuning parameter, to be determined separately. Equa-
tuning parameter

tion 6.5 trades off two different criteria. As with least squares, ridge regres-
sion seeks coefficient estimates that fit the data well, by making the RSS
small. However, the second term, λ

∑
j β

2
j , called a shrinkage penalty, is

shrinkage penalty
small when β1, . . . ,βp are close to zero, and so it has the effect of shrinking
the estimates of βj towards zero. The tuning parameter λ serves to control
the relative impact of these two terms on the regression coefficient esti-
mates. When λ = 0, the penalty term has no effect, and ridge regression
will produce the least squares estimates. However, as λ→∞, the impact of
the shrinkage penalty grows, and the ridge regression coefficient estimates
will approach zero. Unlike least squares, which generates only one set of co-
efficient estimates, ridge regression will produce a different set of coefficient
estimates, β̂R

λ , for each value of λ. Selecting a good value for λ is critical;
we defer this discussion to Section 6.2.3, where we use cross-validation.
Note that in (6.5), the shrinkage penalty is applied to β1, . . . ,βp, but

not to the intercept β0. We want to shrink the estimated association of
each variable with the response; however, we do not want to shrink the
intercept, which is simply a measure of the mean value of the response
when xi1 = xi2 = . . . = xip = 0. If we assume that the variables — that
is, the columns of the data matrix X — have been centered to have mean
zero before ridge regression is performed, then the estimated intercept will
take the form β̂0 = ȳ =

∑n
i=1 yi/n.
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Ridge Regression Adds a Penalty on      !  
•  The effect of this equation is to add a penalty of the form  

 
Where the tuning parameter     is a positive value.  
•  This has the effect of “shrinking” large values of       

towards zero. 
•   It turns out that such a constraint should improve the fit, 

because shrinking the coefficients can significantly reduce 
their variance 

• Notice that when    = 0, we get the OLS!   
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∑n
i=1 yi/n.

β 's

6.2 Shrinkage Methods 217

shrinking the coefficient estimates can significantly reduce their variance.
The two best-known techniques for shrinking the regression coefficients
towards zero are ridge regression and the lasso.

6.2.1 Ridge Regression

Recall from Chapter 3 that the least squares fitting procedure estimates
β0,β1, . . . ,βp using the values that minimize

RSS =
n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2

.

Ridge regression is very similar to least squares, except that the coefficients
ridge regression

are estimated by minimizing a slightly different quantity. In particular, the
ridge regression coefficient estimates β̂R are the values that minimize

n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2

+ λ
p∑

j=1

β2
j = RSS + λ

p∑

j=1

β2
j , (6.5)

where λ ≥ 0 is a tuning parameter, to be determined separately. Equa-
tuning parameter

tion 6.5 trades off two different criteria. As with least squares, ridge regres-
sion seeks coefficient estimates that fit the data well, by making the RSS
small. However, the second term, λ

∑
j β

2
j , called a shrinkage penalty, is

shrinkage penalty
small when β1, . . . ,βp are close to zero, and so it has the effect of shrinking
the estimates of βj towards zero. The tuning parameter λ serves to control
the relative impact of these two terms on the regression coefficient esti-
mates. When λ = 0, the penalty term has no effect, and ridge regression
will produce the least squares estimates. However, as λ→∞, the impact of
the shrinkage penalty grows, and the ridge regression coefficient estimates
will approach zero. Unlike least squares, which generates only one set of co-
efficient estimates, ridge regression will produce a different set of coefficient
estimates, β̂R

λ , for each value of λ. Selecting a good value for λ is critical;
we defer this discussion to Section 6.2.3, where we use cross-validation.
Note that in (6.5), the shrinkage penalty is applied to β1, . . . ,βp, but

not to the intercept β0. We want to shrink the estimated association of
each variable with the response; however, we do not want to shrink the
intercept, which is simply a measure of the mean value of the response
when xi1 = xi2 = . . . = xip = 0. If we assume that the variables — that
is, the columns of the data matrix X — have been centered to have mean
zero before ridge regression is performed, then the estimated intercept will
take the form β̂0 = ȳ =
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Credit Data: Ridge Regression 
• As     increases, the standardized coefficients shrinks 

towards zero. 

IOM 530: Intro. to Statistical Learning  16 

1e−02 1e+00 1e+02 1e+04

−
3

0
0

−
1
0

0
0

1
0
0

2
0
0

3
0

0
4

0
0

S
ta

n
d

a
rd

iz
e

d
 C

o
e

ff
ic

ie
n

ts

Income
Limit
Rating
Student

0.0 0.2 0.4 0.6 0.8 1.0

−
3
0

0
−

1
0
0

0
1
0
0

2
0

0
3
0
0

4
0
0

S
ta

n
d

a
rd

iz
e

d
 C

o
e

ff
ic

ie
n

ts

λ ∥β̂R
λ
∥2/∥β̂∥2

6.2 Shrinkage Methods 217

shrinking the coefficient estimates can significantly reduce their variance.
The two best-known techniques for shrinking the regression coefficients
towards zero are ridge regression and the lasso.

6.2.1 Ridge Regression

Recall from Chapter 3 that the least squares fitting procedure estimates
β0,β1, . . . ,βp using the values that minimize

RSS =
n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2

.

Ridge regression is very similar to least squares, except that the coefficients
ridge regression

are estimated by minimizing a slightly different quantity. In particular, the
ridge regression coefficient estimates β̂R are the values that minimize

n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2

+ λ
p∑

j=1

β2
j = RSS + λ

p∑

j=1

β2
j , (6.5)

where λ ≥ 0 is a tuning parameter, to be determined separately. Equa-
tuning parameter

tion 6.5 trades off two different criteria. As with least squares, ridge regres-
sion seeks coefficient estimates that fit the data well, by making the RSS
small. However, the second term, λ

∑
j β

2
j , called a shrinkage penalty, is

shrinkage penalty
small when β1, . . . ,βp are close to zero, and so it has the effect of shrinking
the estimates of βj towards zero. The tuning parameter λ serves to control
the relative impact of these two terms on the regression coefficient esti-
mates. When λ = 0, the penalty term has no effect, and ridge regression
will produce the least squares estimates. However, as λ→∞, the impact of
the shrinkage penalty grows, and the ridge regression coefficient estimates
will approach zero. Unlike least squares, which generates only one set of co-
efficient estimates, ridge regression will produce a different set of coefficient
estimates, β̂R

λ , for each value of λ. Selecting a good value for λ is critical;
we defer this discussion to Section 6.2.3, where we use cross-validation.
Note that in (6.5), the shrinkage penalty is applied to β1, . . . ,βp, but

not to the intercept β0. We want to shrink the estimated association of
each variable with the response; however, we do not want to shrink the
intercept, which is simply a measure of the mean value of the response
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Why can shrinking towards zero be a 
good thing to do? 
•  It turns out that the OLS estimates generally have low 

bias but can be highly variable. In particular when n and p 
are of similar size or when n < p, then the OLS estimates 
will be extremely variable  

•  The penalty term makes the ridge regression estimates 
biased  but can also substantially reduce variance 

•  Thus, there is a bias/ variance trade-off 
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Ridge Regression Bias/ Variance 
• Black: Bias 
• Green: Variance 
• Purple: MSE 
•  Increase       increases bias but decreases variance 
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Bias/ Variance Trade-off 
•  In general, the ridge 

regression estimates 
will be more biased 
than the OLS ones but 
have lower variance 

 
 
•  Ridge regression will 

work best in situations 
where the OLS 
estimates have high 
variance 

IOM 530: Intro. to Statistical Learning  19 



Computational Advantages of Ridge 
Regression 
•  If p is large, then using the best subset selection approach 

requires searching through enormous numbers of 
possible models 

• With Ridge Regression, for any given    , we only need to 
fit one model and the computations turn out to be very 
simple 

• Ridge Regression can even be used when p > n, a 
situation where OLS fails completely!       
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Ridge regression is very similar to least squares, except that the coefficients
ridge regression

are estimated by minimizing a slightly different quantity. In particular, the
ridge regression coefficient estimates β̂R are the values that minimize
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j = RSS + λ
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where λ ≥ 0 is a tuning parameter, to be determined separately. Equa-
tuning parameter

tion 6.5 trades off two different criteria. As with least squares, ridge regres-
sion seeks coefficient estimates that fit the data well, by making the RSS
small. However, the second term, λ

∑
j β

2
j , called a shrinkage penalty, is

shrinkage penalty
small when β1, . . . ,βp are close to zero, and so it has the effect of shrinking
the estimates of βj towards zero. The tuning parameter λ serves to control
the relative impact of these two terms on the regression coefficient esti-
mates. When λ = 0, the penalty term has no effect, and ridge regression
will produce the least squares estimates. However, as λ→∞, the impact of
the shrinkage penalty grows, and the ridge regression coefficient estimates
will approach zero. Unlike least squares, which generates only one set of co-
efficient estimates, ridge regression will produce a different set of coefficient
estimates, β̂R

λ , for each value of λ. Selecting a good value for λ is critical;
we defer this discussion to Section 6.2.3, where we use cross-validation.
Note that in (6.5), the shrinkage penalty is applied to β1, . . . ,βp, but

not to the intercept β0. We want to shrink the estimated association of
each variable with the response; however, we do not want to shrink the
intercept, which is simply a measure of the mean value of the response
when xi1 = xi2 = . . . = xip = 0. If we assume that the variables — that
is, the columns of the data matrix X — have been centered to have mean
zero before ridge regression is performed, then the estimated intercept will
take the form β̂0 = ȳ =

∑n
i=1 yi/n.



6.2.2. The LASSO 
• Ridge Regression isn’t perfect 

• One significant problem is that the penalty term will never 
force any of the coefficients to be exactly zero. Thus, the 
final model will include all variables, which makes it harder 
to interpret  

• A more modern alternative is the LASSO 

•  The LASSO works in a similar way to Ridge Regression, 
except it uses a different penalty term  
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LASSO’s Penalty Term 
• Ridge Regression minimizes 

•  The LASSO estimates the        by minimizing the   

IOM 530: Intro. to Statistical Learning  22 

β 's

6.2 Shrinkage Methods 217

shrinking the coefficient estimates can significantly reduce their variance.
The two best-known techniques for shrinking the regression coefficients
towards zero are ridge regression and the lasso.

6.2.1 Ridge Regression
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sion seeks coefficient estimates that fit the data well, by making the RSS
small. However, the second term, λ
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j , called a shrinkage penalty, is

shrinkage penalty
small when β1, . . . ,βp are close to zero, and so it has the effect of shrinking
the estimates of βj towards zero. The tuning parameter λ serves to control
the relative impact of these two terms on the regression coefficient esti-
mates. When λ = 0, the penalty term has no effect, and ridge regression
will produce the least squares estimates. However, as λ→∞, the impact of
the shrinkage penalty grows, and the ridge regression coefficient estimates
will approach zero. Unlike least squares, which generates only one set of co-
efficient estimates, ridge regression will produce a different set of coefficient
estimates, β̂R

λ , for each value of λ. Selecting a good value for λ is critical;
we defer this discussion to Section 6.2.3, where we use cross-validation.
Note that in (6.5), the shrinkage penalty is applied to β1, . . . ,βp, but

not to the intercept β0. We want to shrink the estimated association of
each variable with the response; however, we do not want to shrink the
intercept, which is simply a measure of the mean value of the response
when xi1 = xi2 = . . . = xip = 0. If we assume that the variables — that
is, the columns of the data matrix X — have been centered to have mean
zero before ridge regression is performed, then the estimated intercept will
take the form β̂0 = ȳ =

∑n
i=1 yi/n.
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Ridge regression also has substantial computational advantages over best
subset selection, which requires searching through 2p models. As we dis-
cussed previously, even for moderate values of p, such a search can be
computationally infeasible. In contrast, for any fixed value of λ, ridge re-
gression only fits a single model, and the model-fitting procedure can be
performed quite quickly. In fact, one can show that the computations re-
quired to solve (6.5), simultaneously for all values of λ, are almost identical
to those for fitting a model using least squares.

6.2.2 The Lasso

Ridge regression does have one obvious disadvantage. Unlike best subset,
forward stepwise, and backward stepwise selection, which will generally
select models that involve just a subset of the variables, ridge regression
will include all p predictors in the final model. The penalty λ

∑
β2
j in (6.5)

will shrink all of the coefficients towards zero, but it will not set any of them
exactly to zero (unless λ =∞). This may not be a problem for prediction
accuracy, but it can create a challenge in model interpretation in settings in
which the number of variables p is quite large. For example, in the Credit

data set, it appears that the most important variables are income, limit,
rating, and student. So we might wish to build a model including just
these predictors. However, ridge regression will always generate a model
involving all ten predictors. Increasing the value of λ will tend to reduce
the magnitudes of the coefficients, but will not result in exclusion of any of
the variables.
The lasso is a relatively recent alternative to ridge regression that over-

lasso
comes this disadvantage. The lasso coefficients, β̂L

λ , minimize the quantity

n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2

+ λ
p∑

j=1

|βj | = RSS + λ
p∑

j=1

|βj |. (6.7)

Comparing (6.7) to (6.5), we see that the lasso and ridge regression have
similar formulations. The only difference is that the β2

j term in the ridge
regression penalty (6.5) has been replaced by |βj | in the lasso penalty (6.7).
In statistical parlance, the lasso uses an ℓ1 (pronounced “ell 1”) penalty
instead of an ℓ2 penalty. The ℓ1 norm of a coefficient vector β is given by
∥β∥1 =

∑
|βj |.

As with ridge regression, the lasso shrinks the coefficient estimates to-
wards zero. However, in the case of the lasso, the ℓ1 penalty has the effect
of forcing some of the coefficient estimates to be exactly equal to zero when
the tuning parameter λ is sufficiently large. Hence, much like best subset se-
lection, the lasso performs variable selection. As a result, models generated
from the lasso are generally much easier to interpret than those produced
by ridge regression. We say that the lasso yields sparse models — that is, sparse



What’s the Big Deal? 
•  This seems like a very similar idea but there is a big 

difference 

• Using this penalty, it could be proven mathematically that 
some coefficients end up being set to exactly zero 

• With LASSO, we can produce a model that has high 
predictive power and it is simple to interpret   
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6.2.3 Selecting the Tuning Parameter  
• We need to decide on a value for  
• Select a grid of potential values, use cross validation to 

estimate the error rate on test data (for each value of    ) 
and select the value that gives the least error rate 
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shrinking the coefficient estimates can significantly reduce their variance.
The two best-known techniques for shrinking the regression coefficients
towards zero are ridge regression and the lasso.

6.2.1 Ridge Regression

Recall from Chapter 3 that the least squares fitting procedure estimates
β0,β1, . . . ,βp using the values that minimize

RSS =
n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2

.

Ridge regression is very similar to least squares, except that the coefficients
ridge regression

are estimated by minimizing a slightly different quantity. In particular, the
ridge regression coefficient estimates β̂R are the values that minimize

n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2

+ λ
p∑

j=1

β2
j = RSS + λ

p∑

j=1

β2
j , (6.5)

where λ ≥ 0 is a tuning parameter, to be determined separately. Equa-
tuning parameter

tion 6.5 trades off two different criteria. As with least squares, ridge regres-
sion seeks coefficient estimates that fit the data well, by making the RSS
small. However, the second term, λ

∑
j β

2
j , called a shrinkage penalty, is

shrinkage penalty
small when β1, . . . ,βp are close to zero, and so it has the effect of shrinking
the estimates of βj towards zero. The tuning parameter λ serves to control
the relative impact of these two terms on the regression coefficient esti-
mates. When λ = 0, the penalty term has no effect, and ridge regression
will produce the least squares estimates. However, as λ→∞, the impact of
the shrinkage penalty grows, and the ridge regression coefficient estimates
will approach zero. Unlike least squares, which generates only one set of co-
efficient estimates, ridge regression will produce a different set of coefficient
estimates, β̂R

λ , for each value of λ. Selecting a good value for λ is critical;
we defer this discussion to Section 6.2.3, where we use cross-validation.
Note that in (6.5), the shrinkage penalty is applied to β1, . . . ,βp, but

not to the intercept β0. We want to shrink the estimated association of
each variable with the response; however, we do not want to shrink the
intercept, which is simply a measure of the mean value of the response
when xi1 = xi2 = . . . = xip = 0. If we assume that the variables — that
is, the columns of the data matrix X — have been centered to have mean
zero before ridge regression is performed, then the estimated intercept will
take the form β̂0 = ȳ =

∑n
i=1 yi/n.
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